IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

DISCRETE VALUATION RINGS

Throughout this lecture, R is an integral domain. Recall that gf(R) denotes the
quotient field of R.

Definition 1. If a valuation domain is Noetherian, then it is called a discrete valuation
ring (DVR).

Example 2. For each p € PP, we have seen before that Z,) is a valuation domain. Since
Z is Noetherian, Z,) is also Noetherian and, therefore, a DVR. Note, in addition, that
Zp) is a local domain whose maximal ideal, pZ,), is principal.

In general, we can characterize DVRs as follows.

Theorem 3. For an integral domain R, the following statements are equivalent.
(a) R is a DVR.
(b) R is a local PID.
(¢) R is a local Noetherian domain whose maximal ideal is principal.
)

(d) R is a local Noetherian integrally closed domain with dim R < 1.

Proof. (a) = (b): A valuation domain is always local. On the other hand, since every
valuation domain is a Bezout domain, the fact that R is Noetherian implies that every
ideal of R is principal.

(b) = (a): Every PID is Noetherian. In addition, every PID is a Bezout domain,
and every local Bezout domain is a valuation domain.

(b) = (c¢): This is clear.

(c) = (b): Assume that R is a local Noetherian domain with maximal ideal M = Rx
for some x € R. To show that R is a PID, let I be a proper ideal of R. By Krull’s
Intersection Theorem, (1, .y M™ = (0), and so there is an n € N such that I C M" but
I ¢ M™!. Take a € I\ M"*!, and write a = uz™ for some u € R. Since a ¢ M"™!,
we obtain that u ¢ M. As R is local, u € R*, and so 2" = u~'a € I. This implies
that I = M™ is a principal ideal. Hence R is a PID.

(b) = (d): It follows from the fact that a PID is a local Noetherian integrally closed

domain with Krull dimension at most 1.
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(d) = (c): Let M be the maximal ideal of R. If R is a field, then M = (0) is
clearly principal. So we will assume that dim R = 1. As R is Noetherian, there is an
ideal Rz that is maximal among all the principal ideals contained in M. Our aim is to
show that M = Rz, and for this it suffices to argue that M C Rx. Suppose, by way
of contradiction, that this is not the case. Since R is a 1-dimensional local domain,
Rad Rz = M, and so the fact that M is finitely generated guarantees the existence of
a minimum m € N such that M™ C Rx. As M ¢ Rx, we see that m > 2. Now take
y € M™ ! 5o that y ¢ Rz. Then y/z € qf(R) satisfies that y/z ¢ R but (y/z)M C R.
Since (y/x)M is an ideal of R, either (y/z)M = R or (y/x)M C M.

CASE 1: (y/x)M = R. In this case, we can take r € M such that yr = z. Since
r ¢ R*, it follows that Rx C Ry, which contradicts the maximality of Rx.

CASE 2: (y/x)M C M. Set s = y/x. Since R is Noetherian, we can take nonzero
elements aq,...,a, € R such that M = Rv; + --- + Rv,. As sM C M, for every
J € [1,n] we can write sv; = > ¢;v; for some cyj,...,¢,; € R. Equivalently,
Av = 0, where A is the matrix (;;8 — ¢;j)1<i j<n and v is the vector (vy,...,v,)T. This
implies that det A = 0 as, otherwise, v; = 0 for all ¢ € [1,n] (by virtue of Cramer’s
Rule). Thus, det A = 0, which implies that s = y/x is a root of the monic polynomial
det(tI, — C') € R[t], where C' = (¢ij)1<i j<n- Hence y/x is integral over R. Since R is
integrally closed, y/x € R, which is a contradiction. 0

As part of the proof of Theorem 3, we obtained the following result.

Corollary 4. If R is a DVR with mazimal ideal M, then the set of nonzero proper
ideals of R is {M™ :n € N}.

Example 5. Fix p € PP and consider the DVR Z,). Suppose that I is a nonzero proper
ideal of Z ). Since Zy) is principal, there exists ¢ € Z, such that I = qZ,. Let n be
the unique nonnegative integer such that ¢ = p"7 for some nonzero a,b € Z such that
pfa (as I is proper, n > 1). Then I = p"Zy,) = (pZg))™

We can also characterize DVRs in terms of valuation maps; indeed, it is precisely the
valuation group in this characterization what motivates the term “discrete valuation
ring”. A valuation map v: F' — ZU{oo} that is surjective is called a discrete valuation
map.

Theorem 6. For an integral domain R, the following statements are equivalent.
(a) R is a DVR.
(b) There is a discrete valuation map v: qf(R) — Z U {oco} satisfying that R =
v (Ng U {o0}).

Proof. (a) = (b): Let R be a DVR, and let M be the maximal ideal of R. It follows
from Theorem 3 that M = Rt for some t € R. Suppose now that ¢ € qf(R)* is
contained in R. Because (),.y M™ = (0) by Krull's Intersection Theorem, there is a
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maximum v(q) € Ny such that "9 divides ¢ in R. Since R is a valuation domain, we
can define v: qf(R)* — Z by q — v(q) if ¢ € R and v — —v(¢~!) otherwise. One can
easily verify that v is a group homomorphism satisfying v(q; + ¢2) > min{v(q1),v(g2)}
for all q1, ¢ € qf(R)* with ¢; + ¢2 # 0. Therefore the extension v: qf(R) — Z U {0},
where v(0) = oo, is a valuation map. It is clear that R = {q € qf(R) : v(q) > 0}.

(b) = (a): Assume now that v: qf(R) — Z U {oo} is a discrete valuation map with
R = v (NgU{o0}). We know from previous lectures that R is a valuation domain
with maximal ideal M := v~}(N U {c0}) and group of units R* = v=1(0). As v is
surjective, there is a t € R with v(t) = 1. Now if r € M and n = v(r), we see that

v(r/t") = 0, and so r = ut™ for some u € R*. Hence M = Rt is a principal ideal.
Thus, R is a DVR by Theorem 3. ([l

With notation as in part (b) of Theorem 6, an element ¢ € R such that v(t) =1 is
called a uniformizer element of the DVR R.

Example 7. Fix p € P. The quotient field of the DVR Z,) is Q. For each nonzero
rational ¢, there is a unique n € Z satisfying that ¢ = p"§ for nonzero a,b € Z such
that p t ab. One can easily verify that the map v: Q — Z U {oo} given by v(q) = n is
a discrete valuation map, and it is clear that Z,) = {¢ € Q : v(¢) > 0}. Note that the
uniformizers of Z,) are the elements of the form p§ for nonzero a,b € Z with p { ab.

Proposition 8. Let R be a DVR. An elementt € R is a uniformizer if and only if the
mazimal ideal of R is Rt.

Proof. We have already argued the direct implication in the proof of Theorem 6 (the
part (b) = (a)). For the reverse implication, suppose that v: qf(R) — Z U {o0} is a
discrete valuation map with R = v~}(Ny U {oo}) and that the maximal ideal of R is
Rt. Since v is surjective there is a ¢ € qf(R) such that v(q) = 1, and it is clear that
q € M. Writing g = rt, we see that v(t)v(r) = v(¢) = 1, which implies that v(t) = 1.
Hence ¢ is a uniformizer element of R. 0J

Corollary 9. In a DVR, every uniformizer is a prime element, and any two uni-
formizer elements are associates.

We have seen before that every DVR is a PID. We conclude this lecture showing
that every DVR is indeed a Euclidean domain.

Proposition 10. Every DVR is a Fuclidean domain.

Proof. Let R be a DVR, and let v: R — Z U {oo} be a discrete valuation map with
R =v"Y(NgU{oo}). We verify that R is a Euclidean domain with respect to the norm
v: R\ {0} — Ny. To do so, take a,b € R such that b # 0. If ab™! € R, then we can
write a = qb + r, where ¢ = ab™! € R and r = 0. On the other hand, assume that
ab™! ¢ R. In this case, we can write a = ¢gb + r for ¢ = 0 and r = a, and observe
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that ab™! ¢ R guarantees that v(ab™!) < 0, that is, v(r) = v(a) < v(b). Thus, R is a
Euclidean domain. O

EXERCISES

Exercise 1. Let F' be a field.
(1) Prove that the ring of formal power series F[z] is a DVR.

(2) The quotient field of F[x] is the field of formal Laurent series F((x)). Find a
discrete valuation map v: F((x)) — Z U {oo} such that v (NoU {oo}) = F[z].

Exercise 2. Fizp € P. A p-adic integer is a formal series ), -, c,p", where ¢, belongs
to the discrete interval [0,p — 1] := {0,1,...,p — 1} for every n € Ny. We define the
addition (resp., multiplication) of two p-adic integers as it is done with formal power
series but using carries to keep the coefficients of the sum (resp., product) in the discrete
interval [0,p — 1]. The set of p-adic integers is denoted by Z,.
(1) Prove that Z,, is an integral domain. The field of fractions of Z,, denoted by Q,,
15 called the field of p-adic numbers.
(2) Prove that Y = { ", <o cnd™ € Zy : ¢o # 0}, and then deduce that Z, is a local
ring.
(3) Prove that every nonzero ideal of Z, has the form p"Z, for some n € N. Deduce
that Z,, is a DVR.
(4) Prove that Q, = Z,[1/p], and find a discrete valuation map v: Q, — Z U {oo}
satisfying that v~ (No U {o0}) = Z,.
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