

IDEAL THEORY AND PRÜFER DOMAINS

FELIX GOTTI

DISCRETE VALUATION RINGS

Throughout this lecture, R is an integral domain. Recall that $\text{qf}(R)$ denotes the quotient field of R .

Definition 1. If a valuation domain is Noetherian, then it is called a *discrete valuation ring (DVR)*.

Example 2. For each $p \in \mathbb{P}$, we have seen before that $\mathbb{Z}_{(p)}$ is a valuation domain. Since \mathbb{Z} is Noetherian, $\mathbb{Z}_{(p)}$ is also Noetherian and, therefore, a DVR. Note, in addition, that $\mathbb{Z}_{(p)}$ is a local domain whose maximal ideal, $p\mathbb{Z}_{(p)}$, is principal.

In general, we can characterize DVRs as follows.

Theorem 3. For an integral domain R , the following statements are equivalent.

- (a) R is a DVR.
- (b) R is a local PID.
- (c) R is a local Noetherian domain whose maximal ideal is principal.
- (d) R is a local Noetherian integrally closed domain with $\dim R \leq 1$.

Proof. (a) \Rightarrow (b): A valuation domain is always local. On the other hand, since every valuation domain is a Bezout domain, the fact that R is Noetherian implies that every ideal of R is principal.

(b) \Rightarrow (a): Every PID is Noetherian. In addition, every PID is a Bezout domain, and every local Bezout domain is a valuation domain.

(b) \Rightarrow (c): This is clear.

(c) \Rightarrow (b): Assume that R is a local Noetherian domain with maximal ideal $M = Rx$ for some $x \in R$. To show that R is a PID, let I be a proper ideal of R . By Krull's Intersection Theorem, $\bigcap_{n \in \mathbb{N}} M^n = (0)$, and so there is an $n \in \mathbb{N}$ such that $I \subseteq M^n$ but $I \not\subseteq M^{n+1}$. Take $a \in I \setminus M^{n+1}$, and write $a = ux^n$ for some $u \in R$. Since $a \notin M^{n+1}$, we obtain that $u \notin M$. As R is local, $u \in R^\times$, and so $x^n = u^{-1}a \in I$. This implies that $I = M^n$ is a principal ideal. Hence R is a PID.

(b) \Rightarrow (d): It follows from the fact that a PID is a local Noetherian integrally closed domain with Krull dimension at most 1.

(d) \Rightarrow (c): Let M be the maximal ideal of R . If R is a field, then $M = (0)$ is clearly principal. So we will assume that $\dim R = 1$. As R is Noetherian, there is an ideal Rx that is maximal among all the principal ideals contained in M . Our aim is to show that $M = Rx$, and for this it suffices to argue that $M \subseteq Rx$. Suppose, by way of contradiction, that this is not the case. Since R is a 1-dimensional local domain, $\text{Rad } Rx = M$, and so the fact that M is finitely generated guarantees the existence of a minimum $m \in \mathbb{N}$ such that $M^m \subseteq Rx$. As $M \not\subseteq Rx$, we see that $m \geq 2$. Now take $y \in M^{m-1}$ so that $y \notin Rx$. Then $y/x \in \text{qf}(R)$ satisfies that $y/x \notin R$ but $(y/x)M \subseteq R$. Since $(y/x)M$ is an ideal of R , either $(y/x)M = R$ or $(y/x)M \subseteq M$.

CASE 1: $(y/x)M = R$. In this case, we can take $r \in M$ such that $yr = x$. Since $r \notin R^\times$, it follows that $Rx \subsetneq Ry$, which contradicts the maximality of Rx .

CASE 2: $(y/x)M \subseteq M$. Set $s = y/x$. Since R is Noetherian, we can take nonzero elements $a_1, \dots, a_n \in R$ such that $M = Rv_1 + \dots + Rv_n$. As $sM \subseteq M$, for every $j \in \llbracket 1, n \rrbracket$ we can write $sv_j = \sum_{i=1}^n c_{ij}v_i$ for some $c_{1j}, \dots, c_{nj} \in R$. Equivalently, $Av = 0$, where A is the matrix $(\delta_{ij}s - c_{ij})_{1 \leq i, j \leq n}$ and v is the vector $(v_1, \dots, v_n)^T$. This implies that $\det A = 0$ as, otherwise, $v_i = 0$ for all $i \in \llbracket 1, n \rrbracket$ (by virtue of Cramer's Rule). Thus, $\det A = 0$, which implies that $s = y/x$ is a root of the monic polynomial $\det(tI_n - C) \in R[t]$, where $C = (c_{ij})_{1 \leq i, j \leq n}$. Hence y/x is integral over R . Since R is integrally closed, $y/x \in R$, which is a contradiction. \square

As part of the proof of Theorem 3, we obtained the following result.

Corollary 4. *If R is a DVR with maximal ideal M , then the set of nonzero proper ideals of R is $\{M^n : n \in \mathbb{N}\}$.*

Example 5. Fix $p \in \mathbb{P}$ and consider the DVR $\mathbb{Z}_{(p)}$. Suppose that I is a nonzero proper ideal of $\mathbb{Z}_{(p)}$. Since $\mathbb{Z}_{(p)}$ is principal, there exists $q \in \mathbb{Z}_{(p)}$ such that $I = q\mathbb{Z}_{(p)}$. Let n be the unique nonnegative integer such that $q = p^n \frac{a}{b}$ for some nonzero $a, b \in \mathbb{Z}$ such that $p \nmid a$ (as I is proper, $n \geq 1$). Then $I = p^n\mathbb{Z}_{(p)} = (p\mathbb{Z}_{(p)})^n$.

We can also characterize DVRs in terms of valuation maps; indeed, it is precisely the valuation group in this characterization what motivates the term “discrete valuation ring”. A valuation map $v: F \rightarrow \mathbb{Z} \cup \{\infty\}$ that is surjective is called a *discrete valuation map*.

Theorem 6. *For an integral domain R , the following statements are equivalent.*

- (a) *R is a DVR.*
- (b) *There is a discrete valuation map $v: \text{qf}(R) \rightarrow \mathbb{Z} \cup \{\infty\}$ satisfying that $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$.*

Proof. (a) \Rightarrow (b): Let R be a DVR, and let M be the maximal ideal of R . It follows from Theorem 3 that $M = Rt$ for some $t \in R$. Suppose now that $q \in \text{qf}(R)^\times$ is contained in R . Because $\bigcap_{n \in \mathbb{N}} M^n = (0)$ by Krull's Intersection Theorem, there is a

maximum $v(q) \in \mathbb{N}_0$ such that $t^{v(q)}$ divides q in R . Since R is a valuation domain, we can define $v: \text{qf}(R)^\times \rightarrow \mathbb{Z}$ by $q \mapsto v(q)$ if $q \in R$ and $v \mapsto -v(q^{-1})$ otherwise. One can easily verify that v is a group homomorphism satisfying $v(q_1 + q_2) \geq \min\{v(q_1), v(q_2)\}$ for all $q_1, q_2 \in \text{qf}(R)^\times$ with $q_1 + q_2 \neq 0$. Therefore the extension $v: \text{qf}(R) \rightarrow \mathbb{Z} \cup \{\infty\}$, where $v(0) = \infty$, is a valuation map. It is clear that $R = \{q \in \text{qf}(R) : v(q) \geq 0\}$.

(b) \Rightarrow (a): Assume now that $v: \text{qf}(R) \rightarrow \mathbb{Z} \cup \{\infty\}$ is a discrete valuation map with $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$. We know from previous lectures that R is a valuation domain with maximal ideal $M := v^{-1}(\mathbb{N} \cup \{\infty\})$ and group of units $R^\times = v^{-1}(0)$. As v is surjective, there is a $t \in R$ with $v(t) = 1$. Now if $r \in M$ and $n = v(r)$, we see that $v(r/t^n) = 0$, and so $r = ut^n$ for some $u \in R^\times$. Hence $M = Rt$ is a principal ideal. Thus, R is a DVR by Theorem 3. \square

With notation as in part (b) of Theorem 6, an element $t \in R$ such that $v(t) = 1$ is called a *uniformizer element* of the DVR R .

Example 7. Fix $p \in \mathbb{P}$. The quotient field of the DVR $\mathbb{Z}_{(p)}$ is \mathbb{Q} . For each nonzero rational q , there is a unique $n \in \mathbb{Z}$ satisfying that $q = p^n \frac{a}{b}$ for nonzero $a, b \in \mathbb{Z}$ such that $p \nmid ab$. One can easily verify that the map $v: \mathbb{Q} \rightarrow \mathbb{Z} \cup \{\infty\}$ given by $v(q) = n$ is a discrete valuation map, and it is clear that $\mathbb{Z}_{(p)} = \{q \in \mathbb{Q} : v(q) \geq 0\}$. Note that the uniformizers of $\mathbb{Z}_{(p)}$ are the elements of the form $p \frac{a}{b}$ for nonzero $a, b \in \mathbb{Z}$ with $p \nmid ab$.

Proposition 8. *Let R be a DVR. An element $t \in R$ is a uniformizer if and only if the maximal ideal of R is Rt .*

Proof. We have already argued the direct implication in the proof of Theorem 6 (the part (b) \Rightarrow (a)). For the reverse implication, suppose that $v: \text{qf}(R) \rightarrow \mathbb{Z} \cup \{\infty\}$ is a discrete valuation map with $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$ and that the maximal ideal of R is Rt . Since v is surjective there is a $q \in \text{qf}(R)$ such that $v(q) = 1$, and it is clear that $q \in M$. Writing $q = rt$, we see that $v(t)v(r) = v(q) = 1$, which implies that $v(t) = 1$. Hence t is a uniformizer element of R . \square

Corollary 9. *In a DVR, every uniformizer is a prime element, and any two uniformizer elements are associates.*

We have seen before that every DVR is a PID. We conclude this lecture showing that every DVR is indeed a Euclidean domain.

Proposition 10. *Every DVR is a Euclidean domain.*

Proof. Let R be a DVR, and let $v: R \rightarrow \mathbb{Z} \cup \{\infty\}$ be a discrete valuation map with $R = v^{-1}(\mathbb{N}_0 \cup \{\infty\})$. We verify that R is a Euclidean domain with respect to the norm $v: R \setminus \{0\} \rightarrow \mathbb{N}_0$. To do so, take $a, b \in R$ such that $b \neq 0$. If $ab^{-1} \in R$, then we can write $a = qb + r$, where $q = ab^{-1} \in R$ and $r = 0$. On the other hand, assume that $ab^{-1} \notin R$. In this case, we can write $a = qb + r$ for $q = 0$ and $r = a$, and observe

that $ab^{-1} \notin R$ guarantees that $v(ab^{-1}) < 0$, that is, $v(r) = v(a) < v(b)$. Thus, R is a Euclidean domain. \square

EXERCISES

Exercise 1. Let F be a field.

- (1) Prove that the ring of formal power series $F[[x]]$ is a DVR.
- (2) The quotient field of $F[[x]]$ is the field of formal Laurent series $F((x))$. Find a discrete valuation map $v: F((x)) \rightarrow \mathbb{Z} \cup \{\infty\}$ such that $v^{-1}(\mathbb{N}_0 \cup \{\infty\}) = F[[x]]$.

Exercise 2. Fix $p \in \mathbb{P}$. A p -adic integer is a formal series $\sum_{n \geq 0} c_n p^n$, where c_n belongs to the discrete interval $[\![0, p-1]\!] := \{0, 1, \dots, p-1\}$ for every $n \in \mathbb{N}_0$. We define the addition (resp., multiplication) of two p -adic integers as it is done with formal power series but using carries to keep the coefficients of the sum (resp., product) in the discrete interval $[\![0, p-1]\!]$. The set of p -adic integers is denoted by \mathbb{Z}_p .

- (1) Prove that \mathbb{Z}_p is an integral domain. The field of fractions of \mathbb{Z}_p , denoted by \mathbb{Q}_p , is called the field of p -adic numbers.
- (2) Prove that $\mathbb{Z}_p^\times = \{ \sum_{n \geq 0} c_n p^n \in \mathbb{Z}_p : c_0 \neq 0 \}$, and then deduce that \mathbb{Z}_p is a local ring.
- (3) Prove that every nonzero ideal of \mathbb{Z}_p has the form $p^n \mathbb{Z}_p$ for some $n \in \mathbb{N}$. Deduce that \mathbb{Z}_p is a DVR.
- (4) Prove that $\mathbb{Q}_p = \mathbb{Z}_p[1/p]$, and find a discrete valuation map $v: \mathbb{Q}_p \rightarrow \mathbb{Z} \cup \{\infty\}$ satisfying that $v^{-1}(\mathbb{N}_0 \cup \{\infty\}) = \mathbb{Z}_p$.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139
 Email address: fgotti@mit.edu